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ture ofdiatomi
 mole
ulesErik Månsson <erik.mansson�sljus.lu.se>, originally Joakim LaksmanO�
e A408, Department of Syn
hrotron Radiation Resear
h, Lund UniversityFebruary 17, 2012Abstra
tIn this 
omputer laboration you will 
ombine theoreti
al modelswith experimental data to extra
t relatively mu
h information fromtwo photoele
tron spe
tra. From theories of vibrations in diatomi
mole
ules and spe
tros
opy, you will de�ne a model with several phys-i
al parameters that need to be sele
ted to make the model �t the dataas good as possible. This is perhaps a more advan
ed way of analyzingdata than you are used to and it would be impra
ti
al to do without
omputer programs for most of the 
al
ulation steps. Therefore, youwill learn or refresh some understanding of probability theory and pro-gramming too.
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1 Introdu
tionPhotoele
tron spe
tros
opy (PS) is an experimental te
hnique in extensiveuse. The phenomenon of photoemission was dete
ted by Hertz in 1887.A few years later, in 1905 Einstein was able to explain this phenomenoninvoking the quantum nature of light. The light sour
e 
an be either a gasdis
harge lamp, an X ray tube or a syn
hrotron radiation sour
e. The lightimpinges on the sample, whi
h 
an be a gas or a surfa
e of a solid, and theele
trons emitted by the photoele
tri
 e�e
t are then analyzed with respe
tto their kineti
 energy, EK , in an ele
trostati
 analyzer [1, 2℄.Exer
ise 1. Explain in a few senten
es how a PS experiment is done exper-imentally.In this laboration, you will be given two photoele
tron spe
tra of the di-atomi
 mole
ule, 
arbon monoxide (CO). One is a valen
e ionization, whilethe other one is a 
ore ionization spe
tra.Your obje
tive is to, by being 
reative, extra
t as mu
h information as pos-sible about CO from these spe
tra. Some of the information available fromthis kind of measurements is:
• The binding energy of ele
troni
 states in the mole
ule.
• The lifetime of di�erent ele
troni
 states.
• The 
hange in internu
lear equilibrium distan
e (bond length) betweenthe ground and the ionized state.
• Vibrational frequen
y (harmoni
 and anharmoni
) of ele
troni
 states.2 Theory of diatomi
 mole
ulesThis 
hapter is supposed to ensure you know enough about mole
ular dy-nami
s to be able to interpret the spe
tra. However, this 
hapter does notgive mu
h ba
kground. You are expe
ted to know something about the fol-lowing key 
on
epts from quantum 
hemistry: Potential energy surfa
e (or -
urve), Morse potential, Harmoni
 os
illator, Fran
k-Condon region and Vi-broni
 transition.Self-test. Read about the topi
s that you feel least 
omfortable with insome book1 or Wikipedia, at least if you en
ounter di�
ulties when readingthe following text.1 Perhaps you have some 
ourse book for quantum me
hani
s, mole
ular spe
tros
opyor 
hemistry? One su
h book is ref. [3℄.
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2.1 Vibrational frequen
yA diatomi
 mole
ule is the simplest possible mole
ule. The two atoms boundtogether 
an be pi
tured as if they are 
onne
ted via an elasti
 spring, whi
h
an be stret
hed and 
ompressed. They must therefore have a equilibriumdistan
e, re, where no for
e is a
ting on them so their a

eleration is zero.If something happens to the mole
ule, su
h as an ionization (or ex
itation),then the for
e 
onstant, k, of the spring is 
hanged, and thereby also the re.In the harmoni
 approximation, the potential energy surfa
e (PES) hasthe shape of a symmetri
 parabola
V (r) = 0.5 · k(r − re)2 (1)where r is the internu
lear distan
e. By solving the S
hrödinger equationfor Eq. (1), we get the eigenenergy values as
En =

(

n+
1

2

)

~ω (2)where n is the vibrational quantum number and ω is the vibrational fre-quen
y. From 
lassi
al me
hani
s, we have the relation
ω =

√

k

µ
(3)where µ is the redu
ed mass. However, the harmoni
 os
illator is only a �rstapproximation to the real mole
ular potential surfa
e and does not des
ribethe physi
al properties in detail. A better 
hoi
e is the Morse potentialthat 
orre
tly des
ribes the strong repulsion of the nu
lei at small distan
esand the disso
iation of the mole
ule whi
h takes pla
e at large internu
leardistan
es.

V (r) = De

(

1− e−α(r−re)
)2 (4)This potential is not symmetri
 around the internu
lear equilibrium distan
elike the harmoni
 potential. Here De is the depth and α is a measure of the
urvature of the potential well. It has the eigenenergy values

En =

(

n+
1

2

)

~ωe −
(

n+
1

2

)2

~ωexe , when n is not too big (5)
ωe =

α

π

√

De

2µ
; xe =

~ωe

4De
(6)The quadrati
 term, in
luding xe, is a small anharmoni
 
orre
tion and ωeis very 
lose to the harmoni
 frequen
y.
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Figure 1: Sket
h of potential 
urves in diatomi
 mole
ule. To 
learly seethe vibrational levels, the following, unrealisti
 parameter values were used:
α = 10 Å−1

, µ = 0.5 u,De = 5 eV, ex
itation or binding energy = 15 eV.2.2 Fran
k-Condon prin
ipleInformation about 
hanges in the internu
lear distan
e between ground andionized states for diatomi
 mole
ules, 
an be found by using the Fran
k-Condon prin
iple (FCP). Clasi
ally, it says that the nu
lei don't have timeto move upon absorption of light, be
ause their mass, and therefore theirinertia is mu
h bigger then the ele
trons'. The FCP implies that in a vibroni
transition is more likely to rea
h ex
ited-state vibrational levels where thenu
lear positions are are the same in the initial ele
troni
 state.Quantum me
hani
ally, a transition probability is proportional to P =
∣

∣

∫

Ψ∗

f µ̂Ψidr
∣

∣

2 where µ̂ 
an be the ele
tri
 dipole operator and Ψ are the fullwavefun
tions. Sin
e we are working within the Born-Oppenheimer approxi-mation, we treat ele
troni
 and vibrational wavefun
tions and sele
tion rulesseparately and fa
torize it into P = Pelectronic ·I(n← ninitial). The ele
troni
transition probability depends on the ele
troni
 states and is not dis
ussedfurther. We turn to the Fran
k-Condon fa
tor, I, whi
h within a parti
ularele
troni
 transition gives the relative probability (intensity) to rea
h ea
hvibrational state ψexcited,n, when starting from ψground,ninitial
: [2, 4, 5℄

I(n← ninitial) ∝
∣

∣

∣

∣

∫

ψ∗

excited,n · ψground,ninitial
dr

∣

∣

∣

∣

2

. (7)4



A very useful simpli�
ation is the linear 
oupling model where both ele
troni
states are des
ribed as harmoni
 os
illators of the same shape, only o�set inequilibrium bond length by ∆re. Non-integral expressions for I 
an then befound and for the 
ase of starting in the lowest vibration, ninitial = 0, theFran
k-Condon fa
tor is [6, 7, 4℄
In = I(n← 0) =

e−SSn

n!
, (8)where S is 
alled the Huang-Rhys parameter or just Poissonian parameterbe
ause equation (8) des
ribes a Poissonian distribution with mean value S.The value of S within the linear 
oupling model is [7, 4℄

S = δ2/2 , δ = ∆re ·
√

µ · ω
~

(9)where δ is the amount by whi
h the normal 
oordinates for a parti
ularvibration di�ers between the initial and ionized states. For a symmetri
stret
hing mode, whi
h is the only kind of vibration in a diatomi
 mole
ule,the rightmost equation relates δ to the 
hange ∆re in the real 
oordinate forbond length, via the redu
ed mass µ and the vibration frequen
y ω (whi
his the same for both ele
troni
 states in the model).The �rst peak, I0, is 
alled the adiabati
 peak and is due to transitions tothe vibrational ground state (n = 0) in the ionized (or ex
ited) mole
ule. These
ond peak, I1, needs higher photon energy and ends up with vibrationalquantum number n = 1, and so on. The most intense peak is 
alled theverti
al peak, 
ompare Figure 1.Exer
ise 2. We assume that in the initial ele
troni
 state (ground state), themole
ule always has the vibrational quantum number ninitial = 0. Explainor show with an equation why this assumption is valid.Exer
ise 3. By using Eq.(8), derive how to get the Huang-Rhys parameterfrom a spe
trum.Exer
ise 4. Explain how one 
an retrieve ∆re from a photoele
tron spe
-trum of a diatomi
 mole
ule, where the resolution is good enough to resolvethe vibrational states.Assuming that you know the mole
ule's vibration frequen
y in the groundstate. How 
an you then estimate whether ∆re is positive or negative?3 Combinations of random errorsIn the following text, the mathemati
al tools required for solving the mainassignment will be given. It is re
ommended that you do all 
al
ulations inthe numeri
al data-treatment program Matlab[8℄, but if you prefer, alsoother programs 
an be used su
h as GNU O
tave, IGOR, S
ilab, Origin,IDL, Mathemati
a and many other. Fitting of fun
tions 
an alternatively bemade with FitXPS [9℄. 5



3.1 ConvolutionTo understand how the various line broadening me
hanisms a�e
t the spe
-tra, we �rst need some probability theory.[10℄Un
ontrolled variations in measurements or fundamentally random quan-tum me
hani
al e�e
ts are des
ribed with probability theory. A quantitythat in ea
h experimental realization (e.g. ea
h ele
tron dete
ted) has asomewhat random value is 
alled a sto
hasti
 variable. To be useful we alsoneed a des
ription of its probability density fun
tion whi
h tells us how likelythe di�erent out
omes are.To take a simple example, let A be the number of dots that fa
es upwhen you have thrown a die. Assuming you don't put the die down ina deterministi
 way, A will be a sto
hasti
 variable that 
an take on theinteger values 1 to 6. Further assuming the die is ideally manufa
tured, theprobability of getting A = x is PA(x) =
1
6 for x ∈ {1, 2, 3, 4, 5, 6} and 0 forall other x. If we instead add the number of dots from two di�erent diesto get C = A+B, some work is ne
essary to derive the probability density

PC(x), now for integers 2 ≤ x ≤ 12.Exer
ise 5. What is the probability of getting C = 8, i.e. the value of
PC(8)?Hint/solution: If you illustrate all (A,B)-
ombinations as 6 × 6-matrix,with the probability of ea
h 
ombination written in that 
ell, you 
an sum upthe probabilities of out
omes that give the desired value for C. For instan
e
PC(3) =

2
36 .After the above exer
ise you should re
ognize the general expression

PC(x) =
∞
∑

a=−∞

PA(a)PB(x− a) = [PA ⊕ PB](x) (10)whi
h is the de�nition of the 
onvolution operator ⊕. Here, the summation
an of 
ourse be limited to 1 ≤ a ≤ 6 be
ause numbers outside that rangehave zero probability.The 
onvolution of two probability densities gives us the probability den-sity for the sum of those two independent sto
hasti
 variables, so the symbol
⊕ is used for its similarity to the operator + for the sum of two knownnumbers. Furthermore, the 
onvolution follows the same algebrai
 rules asaddition (
ommutativity and asso
iativity).For real-valued (not just integer) sto
hasti
 variables, the 
onvolutionworks the same way but the sum be
omes an integral:

PC(x) =

∫

∞

−∞

PA(a)PB(x− a)da = [PA ⊕ PB](x), (11)where PB and PC now are 
ontinuous probability density fun
tions. Thatmeans the probability of getting A in the interval a ≤ A < a + ∆a is
∫ a+∆a
a PA(x)dx ≈ PA(a)∆a where the approximation holds for small ∆a.6



3.2 Implementation exampleTo see how the 
onvolution operator 
an be implemented in Matlab (andO
tave), an example program 
ombined_broadening_MonteCarlo.m is pro-vided. This program 
al
ulates the probability distribution of a person's po-sition when a train stops, treating the position within the train as uniformlydistributed and the train's stop position as normally distributed. Sin
e thesetwo sto
hasti
 variables need to be added to get the position with respe
tto the station, the 
onvolution operator 
an be used (�Solution 2� in theprogram). The program also 
ontains a 
ompletely di�erent way to simulatethe distribution (�Solution 1�).Exer
ise 6. Study the 
ombined_broadening_MonteCarlo.m program andrun it. Play with other values at least for the N and dx parameters thatdes
ribe the number of simulations and the width of histogram bins. Mentionsome advantage of ea
h solution 
ompared to the other.(Optional exer
ise: Can you imagine some kind of statisti
al problemwhere a simulation-solution like the �rst is used rather than operations onprobability densities?)3.3 Line broadeningFrom the name �spe
tral line� it seems there would be no with of the peaksin an ideal measurement. But from Heisenberg's un
ertainty prin
iple thatmeasurement would have to last an in�nite amount of time, without the stateyou are looking at de
aying into something else or you turning o� the light.As a 
onsequen
e of �nite lifetime for ex
ited states, the natural linewidthappears as a minimum width. Then there are of 
ourse 
ompli
ations onthe mole
ular level as well as in the apparatus. As you should have learnedfrom 
hapter 3.1, the 
onvolution operator allows us to express not just theresulting width, but also the resulting shape of a peak in the spe
trum, if we
an des
ribe the probability densities of all the broadening me
hanisms.Inhomogeneous broadenings are those where ea
h mole
ule (or photoele
-tron) is a�e
ted independently of the other, spe
i�
ally Doppler broadening(see se
tion 3.4), that the light is not fully mono
hromati
 and most otherimperfe
tions of the spe
trometer. These have Gaussian probability densityfun
tions, fG(ν), where ν represents frequen
y or energy. (Sin
e energy andfrequen
y are proportional you 
an de
ide the unit, just be 
onsistent)Natural and pressure broadenings are instead homogeneous, in the sensethat they a�e
t all mole
ules identi
ally. Their probability densities areLorentzian fun
tions, fL(ν).The Gaussian and Lorentzian probability densities are:
fG(ν) =

2

ΓG

√

π

log 2

· e−4 log(2)(ν−ν0)2/Γ 2
G (12)

fL(ν) =
1
2π ·

ΓL

(ν−ν0)2+(ΓL/2)2
(13)7



where ν0 is the 
enter energy (or frequen
y) and the width is expressed usingFull width at half maximum (FWHM) ΓL and ΓG. The natural logarithm isdenoted log, as in Matlab.Self-test. Con�rm numeri
ally that the density fun
tions in Eq. (12) and(13) really are normalized and have FWHM ΓL and ΓG.Both Gaussian and Lorentzian fun
tions have the property that when
onvolving two Gaussians the result is also a Gaussian, and when 
onvolvingtwo Lorentzians the result is a Lorentzian. This means that all the inhomo-geneous broadening 
ontributions 
an be 
ombined into one Gaussian, andall the homogeneous into one Lorentzian.For instan
e, the total instrumental line broadening is the 
onvolution ofmono
hromator and spe
trometer broadening, both Gaussian with FWHM
Γm and Γs respe
tively.Exer
ise 7. Demonstrate numeri
ally for a few values that the relation

Γ 2
G = Γ 2

m + Γ 2
s (14)holds for Gaussians.2 If you want to, you 
an prove it analyti
ally instead,but the numeri
 exer
ise may be a good preparation for the later exer
ises.Hint: You are supposed to 
ompute the 
onvolution numeri
ally and insome way read out the FWHM. Type do
 
onv in the Matlab windowto get more information of how the 
onv(A,B) 
ommand works. A simpleself-test 
ould be to use it to solve Exer
ise 5 again.3.4 Doppler broadeningDoppler broadening is the broadening of spe
tral lines due to the Dopplere�e
t in whi
h the thermal movement of atoms or mole
ules shifts the ap-parent frequen
y of ea
h emitter. The many di�erent velo
ities, v, of theemitting gas parti
les are following the Maxwell distribution

fM(v) =

√

m

2πkBT
· e−mv2/(2kBT ). (15)In the non-relativisti
 regime, the Doppler shift in frequen
y must be pro-portional to the velo
ity a

ording to ν = ν0(1 +

v
c ), with c as the speed oflight, meaning that the Doppler pro�le also is a Gaussian. The broadeningis dependent only on the energy of the transition, ν0, the mass of the emit-ting parti
le, m, and the temperature, T , and 
an therefore be a method for2Note: this relation for the Normal distribution is one explanation of why you addthe square of independent un
ertainties in the �error propagation� formula to get a totalun
ertainty (In Swedish: felberäkning/felfortplantning).8



measuring the temperature of a known gas. The standard-deviation, σD, ofthe Doppler pro�le is [11℄
σD =

ν0
c

√

kBT

m
, (16)where kB is Boltzmann's 
onstant. The FWHM, Γ , of a Gaussian (Normal)distribution is related to σ by Γ = 2

√
2 · log 2 · σ.3.5 Voigt fun
tionThe 
onvolution of Gaussian and Lorentzian gives the Voigt density fG,L(ν),that has two parameters to des
ribe its shape.The pressure 
ontribution is rather small and 
an usually be negle
ted.Therefore ΓL is the natural line-width whi
h is useful sin
e it, with the helpof Heisenberg's un
ertainty relation, 
an give the lifetime of the state. TheDoppler 
ontribution is also often quite small, so that ΓG is 
lose to theoverall instrumental broadening.Exer
ise 8. Start with 
reating a Gaussian and a Lorentzian density fun
-tion distributed around zero. Let ΓG and ΓL be 0.050. Now, 
onvolve thenormalized Gaussian and Lorentzian peaks into a Voigt peak. This you 
ando either by using the expression Eq. (11) or by using the Matlab 
ommand
onv(A,B). Now plot the normalized result from the 
onvolution togetherwith the Lorentzian (natural line pro�le) and the Gaussian (instrumentalline pro�le). Redo this for di�erent instrumental broadenings (for example

ΓG = 0.005 or 0.10). What has happened to the distribution?4 Data analysis4.1 Preparatory taskNow we are ready to �t a real experimental photoele
tron spe
trum. If youwant to, you 
an pra
ti
e on the spe
trum of Ar 3p whi
h is a bit simplerthan the CO-spe
trum, be
ause the peaks are well separated and only two.If you design a program for automati
 �tting in a smart way, e.g. a

ept-ing a list of approximative (read out manually) peak 
enter energies and aguess for the width-parameters, it may be helpful to test it on this simplespe
trum and then re-use it for the 
arbon monoxide data. On
e the pro-gram works, �tting more peaks shouldn't require mu
h more work from you.On the other hand, if you want to make a less sophisti
ated program whereyou feel that the more peaks you �t the more manual work is involved, thenperhaps you should skip this exer
ise.Self-test. The �le Ar_3p.txt 
ontains a photoele
tron spe
trum of theargon 3p spin-orbit split lines. The �rst 
olumn is binding energy (ionization9



energy) in ele
tronvolts and the se
ond is intensity in an arbitrary unit. Findthe energies and both the Gaussian and the Lorentzian FWHM of the linesby �tting a Voigt fun
tion in ea
h peak, or even better, �t a sum of twodi�erent Voigt fun
tions to the full spe
trum. You 
an 
ompare the energiesto the expe
ted ones [12℄ to name them.Hint: To get the �tting as good as possible you want the residual sum ofsquared errors, ∑i(di−fi)2, to be as small as possible. di is the experimentaldata and fi is the �tted data, at the energy of frequen
y νi.Hint: fitting_example.m shows three ways of �tting fun
tions to data inMatlab and 
an be used as a starting point, although you are free to solvethe task in other ways.4.2 Carbon monoxide experimentThe experimental work on 
arbon monoxide is unfortunately already done,sin
e it is di�
ult to obtain beamtime for this kind of edu
ational workon resear
h equipment. When using a spe
trometer at a multi-user fa
ilitysu
h as MAX-II, the instrumental line-broadening me
hanisms are usuallyknown3 with some a

ura
y. In table 1, these broadenings are spe
i�ed. Asstated in se
tion 3.5, you 
an assume the Doppler and pressure broadeningsare negligible. If you want to, you 
an try to determine also the Doppler
ontribution and dis
uss that result.The �les CO_C1s.txt and CO_valen
e.txt 
ontain photoele
tronspe
tra from CO 
ore and valen
e ionization. For the valen
e, 120 eV photonenergy was used while for the 
ore ionization 360 eV was used. The data�les 
ontain one 
olumn with binding energy (ionization energy) [eV℄ andone with intensity [arbitrary unit, maybe number of 
ounts℄.Exer
ise 9. Now analyze this data! See page 2 for a list of properties thatyou 
an get info about. Hint: In the ground state, CO has the equilibriumdistan
e 1.1283 Å, and the vibration frequen
y 2170.2 
m−1.Exer
ise 10. Dis
uss di�eren
es in the measured parameters between thevarious ele
troni
 states, su
h as lifetime and vibrational frequen
y. What
an be said about valen
e ele
trons' orbital wavefun
tions based on theseresults?3Be
ause someone has 
alibrated and tested the instrument before us.Table 1: Full width at half max (FWHM) of instrumental line-broadening 
ontributionsfor mono
hromator Γm, and spe
trometer Γs. Exer
ise 7 gives ΓG.Photon energy [eV℄ Γm [eV℄ Γs [eV℄ ΓG [eV℄120 eV 0.015 0.025 0.029360 eV 0.077 0.076 0.10810



Write a report with answers to all exer
ises and some more explanationabout how you did to solve the non-trivial ones. You should at least in-
lude the interesting parts of program sour
e 
ode. If your des
riptions andprograms are 
learly presented it 
an be possible for the examiner to helpyou or give you s
ores even when you did a small mistake, while this is notpossible if strange results are presented without motivation. If you think itis too mu
h to print, you 
an e-mail the full programs in a zip-�le. Eitherway, the report should be s
ienti�
ally understandable without looking atprogram atta
hments.It is always ni
e to 
ompare to previous experiments, so you have an ideaabout what to expe
t and 
an build upon existing knowledge. Figure 2 is a
opy from a book [1℄ with referen
e data about valen
e states in CO and a
alibrated photoele
tron spe
trum taken with a He I dis
harge lamp4.Referen
es[1℄ K. Kimura, Handbook of He I photoele
tron spe
tra of fundamental organi
 mole
ules,Halsted press (1981), ISBN 0 470 27200 7.[2℄ J. M. Hollas, Modern Spe
tros
opy, 4th Edition, Wiley (2004) ISBN 0 470 84416 7.[3℄ P. Atkins & J. De Paula, Physi
al Chemistry, Oxford University Press (2010), ISBN978 0 19 954337 3. Chapters 12.8�12.10 and 13.2 (in 9th edition, or �nd �vibration� and�Fran
k-Condon� in the index).[4℄ R. W. Ni
holls, Model studies on the systemati
s and interpolation of Fran
k-Condonfa
tor arrays, J. Quant. Spe
tros
. Radiat. Transfer, 28, 481-492 (1982).[5℄ E. U. Condon, Nu
lear motions asso
iated with ele
tron transitions in diatomi
mole
ules, Phys. Rev. 32, 858, (1928).[6℄ S. Karabunarliev, E. Bittner & M. Baumgarten, Fran
k-Condon spe
tra and ele
tron-liberation 
oupling in para-polyphenyls, J. Chem. Phys. 114, 5863 (2001).[7℄ M. Smedh, Mole
ular overlayers on homogeneous and heterogeneous metal surfa
esstudied by 
ore-level photoemission. PhD-thesis, Department of Syn
hrotron Radia-tion Resear
h, Lund University (2001).[8℄ You 
an download Matlab from http://program.ddg.lth.se/.[9℄ http://www.sljus.lu.se/download.html.[10℄ G. Blom, Sannolikhetslära o
h statistikteori med tillämpningar, Studentlitteratur(2005), ISBN 9144024428.[11℄ C. J. Foot, Atomi
 Physi
s, Oxford University Press (2005), ISBN 0 19 850696 1.[12℄ Lawren
e Berkeley National Laboratory. X-Ray Data Booklet, Se
tion 1.1: Ele
tronbinding energies. http://xdb.lbl.gov/Se
tion1/Se
_1-1.html.
4A �He I�-lamp uses emission from neutral helium ex
ited by dis
harges from a 
athode,parti
ularly the dominating 21.2 eV emission line 1s2p 1P → 1s2 1S. A �He II�-lamp usesthe dominating line within He+ and analogous names are used for other elements.11

http://www.sciencedirect.com/science/article/pii/0022407382900140
http://dx.doi.org/10.1063/1.1351853
http://libris.kb.se/bib/7672028
http://program.ddg.lth.se/
http://www.sljus.lu.se/download.html
http://xdb.lbl.gov/Section1/Sec_1-1.html


Figure 2: Calibrated photoele
tron spe
trum of CO valen
e states taken with a HeI-dis
harge lamp [1℄. 12
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