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Abstract

In this computer laboration you will combine theoretical models
with experimental data to extract relatively much information from
two photoelectron spectra. From theories of vibrations in diatomic
molecules and spectroscopy, you will define a model with several phys-
ical parameters that need to be selected to make the model fit the data
as good as possible. This is perhaps a more advanced way of analyzing
data than you are used to and it would be impractical to do without
computer programs for most of the calculation steps. Therefore, you
will learn or refresh some understanding of probability theory and pro-
gramming too.
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1 Introduction

Photoelectron spectroscopy (PS) is an experimental technique in extensive
use. The phenomenon of photoemission was detected by Hertz in 1887.
A few years later, in 1905 Einstein was able to explain this phenomenon
invoking the quantum nature of light. The light source can be either a gas
discharge lamp, an X ray tube or a synchrotron radiation source. The light
impinges on the sample, which can be a gas or a surface of a solid, and the
electrons emitted by the photoelectric effect are then analyzed with respect
to their kinetic energy, Ef, in an electrostatic analyzer [I} 2].

Exercise 1. Explain in a few sentences how a PS experiment is done exper-
imentally.

In this laboration, you will be given two photoelectron spectra of the di-
atomic molecule, carbon monozide (CO). One is a valence ionization, while
the other one is a core ionization spectra.

Your objective is to, by being creative, extract as much information as pos-
sible about CO from these spectra. Some of the information available from
this kind of measurements is:

e The binding energy of electronic states in the molecule.
e The lifetime of different electronic states.

e The change in internuclear equilibrium distance (bond length) between
the ground and the ionized state.

e Vibrational frequency (harmonic and anharmonic) of electronic states.

2 Theory of diatomic molecules

This chapter is supposed to ensure you know enough about molecular dy-
namics to be able to interpret the spectra. However, this chapter does not
give much background. You are expected to know something about the fol-
lowing key concepts from quantum chemistry: [Potential energy surface (or -
curve),|Morse potential,|[Harmonic oscillator, Franck-Condon region/and Vi-
bronic transition.

Self-test. Read about the topics that you feel least comfortable with in
some boo or Wikipedia, at least if you encounter difficulties when reading
the following text.

! Perhaps you have some course book for quantum mechanics, molecular spectroscopy
or chemistry? One such book is ref. [3].


http://en.wikipedia.org/wiki/Potential_energy_surface
http://en.wikipedia.org/wiki/Morse_potential
http://en.wikipedia.org/wiki/Quantum_harmonic_oscillator
http://en.wikipedia.org/wiki/Franck-Condon_principle

2.1 Vibrational frequency

A diatomic molecule is the simplest possible molecule. The two atoms bound
together can be pictured as if they are connected via an elastic spring, which
can be stretched and compressed. They must therefore have a equiltbrium
distance, re, where no force is acting on them so their acceleration is zero.
If something happens to the molecule, such as an ionization (or excitation),
then the force constant, k, of the spring is changed, and thereby also the 7.

In the harmonic approximation, the potential energy surface (PES) has
the shape of a symmetric parabola

V(r)=0.5-k(r—r.)? (1)

where r is the internuclear distance. By solving the Schrédinger equation
for Eq. (Il), we get the eigenenergy values as

E, = <n+%>hw (2)

where n is the vibrational quantum number and w is the vibrational fre-
quency. From classical mechanics, we have the relation

w=4/— (3)

where p is the reduced mass. However, the harmonic oscillator is only a first
approximation to the real molecular potential surface and does not describe
the physical properties in detail. A better choice is the Morse potential
that correctly describes the strong repulsion of the nuclei at small distances
and the dissociation of the molecule which takes place at large internuclear

distances. )

V(r) = D, (1 - e*avf’“e)) (4)

This potential is not symmetric around the internuclear equilibrium distance
like the harmonic potential. Here D, is the depth and « is a measure of the
curvature of the potential well. It has the eigenenergy values

1 1\?
E, = <n -+ 5) hwe — <n -+ 5) hwere , when n is not too big  (5)
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The quadratic term, including z., is a small anharmonic correction and we
is very close to the harmonic frequency.



25

20+
>
(0]
> 15|
© e Electronic excited (or ionized) state,
S ne Morse potential with r_ = 1.03
= mi i
% mi i Electronic ground state,
3 10} 0 Morse potential with r_ = 1.00 A
o
a

Anharmonic vibrational levels

__Vibronic transitions from ground state
to excited levelsn =0, 1, 2, 3and 4

]

1.05 1.1 1.15 1.2 1.25 1.3
Internuclear distance / A

Figure 1: Sketch of potential curves in diatomic molecule. To clearly see
the vibrational levels, the following, unrealistic parameter values were used:
a =10 A_l,,u = 0.5 u, D, = 5 €V, excitation or binding energy = 15 eV.

2.2 Franck-Condon principle

Information about changes in the internuclear distance between ground and
ionized states for diatomic molecules, can be found by using the Franck-
Condon principle (FCP). Clasically, it says that the nuclei don’t have time
to move upon absorption of light, because their mass, and therefore their
inertia is much bigger then the electrons’. The FCP implies that in a vibronic
transition is more likely to reach excited-state vibrational levels where the
nuclear positions are are the same in the initial electronic state.

Quantum mechanically, a transition probability is proportional to P =
| IRz ﬂ!l/idﬂ? where i can be the electric dipole operator and ¥ are the full
wavefunctions. Since we are working within the Born-Oppenheimer approxi-
mation, we treat electronic and vibrational wavefunctions and selection rules
separately and factorize it into P = Phjectronic - £ (7 <= Ninitia1). The electronic
transition probability depends on the electronic states and is not discussed
further. We turn to the Franck-Condon factor, I, which within a particular
electronic transition gives the relative probability (intensity) to reach each
vibrational state Yexcited,n, When starting from Yground niya: 125 4 5]

2
I(n A ninitial) X ‘/ w:xcited,n ’ wground,ninitialdr . (7)
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A very useful simplification is the linear coupling model where both electronic
states are described as harmonic oscillators of the same shape, only offset in
equilibrium bond length by Ar.. Non-integral expressions for I can then be
found and for the case of starting in the lowest vibration, niuitia1 = 0, the
Franck-Condon factor is [6] [7, [4]
-Sqn

- n'S ’ ®)
where S is called the Huang-Rhys parameter or just Poissonian parameter
because equation (&) describes a Poissonian distribution with mean value S.
The value of S within the linear coupling model is |7, 4]

S =62/2 ,5:myﬂ%¥ 9)

where ¢ is the amount by which the normal coordinates for a particular
vibration differs between the initial and ionized states. For a symmetric
stretching mode, which is the only kind of vibration in a diatomic molecule,
the rightmost equation relates § to the change Ar, in the real coordinate for
bond length, via the reduced mass p and the vibration frequency w (which
is the same for both electronic states in the model).

The first peak, Iy, is called the adiabatic peak and is due to transitions to
the vibrational ground state (n = 0) in the ionized (or excited) molecule. The
second peak, I, needs higher photon energy and ends up with vibrational
quantum number n = 1, and so on. The most intense peak is called the
vertical peak, compare Figure [II

I, =I(n +0) =

Exercise 2. We assume that in the initial electronic state (ground state), the
molecule always has the vibrational quantum number nj,t;,1 = 0. Explain
or show with an equation why this assumption is valid.

Exercise 3. By using Eq.(8]), derive how to get the Huang-Rhys parameter
from a spectrum.

Exercise 4. Explain how one can retrieve Ar, from a photoelectron spec-
trum of a diatomic molecule, where the resolution is good enough to resolve
the vibrational states.

Assuming that you know the molecule’s vibration frequency in the ground
state. How can you then estimate whether Ar, is positive or negative?

3 Combinations of random errors

In the following text, the mathematical tools required for solving the main
assignment will be given. It is recommended that you do all calculations in
the numerical data-treatment program MATLAB[8], but if you prefer, also
other programs can be used such as GNU Octave, IGOR, Scilab, Origin,
IDL, Mathematica and many other. Fitting of functions can alternatively be
made with FitXPS[9].



3.1 Convolution

To understand how the various line broadening mechanisms affect the spec-
tra, we first need some probability theory.[10)]

Uncontrolled variations in measurements or fundamentally random quan-
tum mechanical effects are described with probability theory. A quantity
that in each experimental realization (e.g. each electron detected) has a
somewhat random value is called a stochastic variable. To be useful we also
need a description of its probability density function which tells us how likely
the different outcomes are.

To take a simple example, let A be the number of dots that faces up
when you have thrown a die. Assuming you don’t put the die down in
a deterministic way, A will be a stochastic variable that can take on the
integer values 1 to 6. Further assuming the die is ideally manufactured, the
probability of getting A = z is Pa(z) = % for x € {1,2,3,4,5,6} and 0 for
all other x. If we instead add the number of dots from two different dies
to get C = A 4+ B, some work is necessary to derive the probability density
Pc(z), now for integers 2 < z < 12.

Exercise 5. What is the probability of getting C = 8§, i.e. the value of
Pc(8)7

Hint /solution: If you illustrate all (A, B)-combinations as 6 x 6-matrix,
with the probability of each combination written in that cell, you can sum up
the probabilities of outcomes that give the desired value for C. For instance

Po(3) = 55.
After the above exercise you should recognize the general expression

(e o]

Po(z) = Y Pa(a)Ps(z —a) = [PA ® Pg](x) (10)

a=—00

which is the definition of the convolution operator ¢. Here, the summation
can of course be limited to 1 < a < 6 because numbers outside that range
have zero probability.

The convolution of two probability densities gives us the probability den-
sity for the sum of those two independent stochastic variables, so the symbol
@ is used for its similarity to the operator + for the sum of two known
numbers. Furthermore, the convolution follows the same algebraic rules as
addition (commutativity and associativity).

For real-valued (not just integer) stochastic variables, the convolution
works the same way but the sum becomes an integral:

oo

Pola) = [~ Pa()Pa(e — a)da = [Py & P (o) (1)
—00

where P and Pg now are continuous probability density functions. That

means the probability of getting A in the interval a < A < a + Aa is

f atla p, (z)dz ~ Px(a)Aa where the approximation holds for small Aa.

a



3.2 Implementation example

To see how the convolution operator can be implemented in Matlab (and
Octave), an example program combined_broadening_MonteCarlo.m is pro-
vided. This program calculates the probability distribution of a person’s po-
sition when a train stops, treating the position within the train as uniformly
distributed and the train’s stop position as normally distributed. Since these
two stochastic variables need to be added to get the position with respect
to the station, the convolution operator can be used (“Solution 2” in the
program). The program also contains a completely different way to simulate
the distribution (“Solution 17).

Exercise 6. Study the combined_broadening_MonteCarlo.m program and
run it. Play with other values at least for the N and dx parameters that
describe the number of simulations and the width of histogram bins. Mention
some advantage of each solution compared to the other.

(Optional exercise: Can you imagine some kind of statistical problem
where a simulation-solution like the first is used rather than operations on
probability densities?)

3.3 Line broadening

From the name “spectral line” it seems there would be no with of the peaks
in an ideal measurement. But from Heisenberg’s uncertainty principle that
measurement would have to last an infinite amount of time, without the state
you are looking at decaying into something else or you turning off the light.
As a consequence of finite lifetime for excited states, the natural linewidth
appears as a minimum width. Then there are of course complications on
the molecular level as well as in the apparatus. As you should have learned
from chapter B.I], the convolution operator allows us to express not just the
resulting width, but also the resulting shape of a peak in the spectrum, if we
can describe the probability densities of all the broadening mechanisms.

Inhomogeneous broadenings are those where each molecule (or photoelec-
tron) is affected independently of the other, specifically Doppler broadening
(see section B.4)), that the light is not fully monochromatic and most other
imperfections of the spectrometer. These have Gaussian probability density
functions, fg(v), where v represents frequency or energy. (Since energy and
frequency are proportional you can decide the unit, just be consistent)

Natural and pressure broadenings are instead homogeneous, in the sense
that they affect all molecules identically. Their probability densities are
Lorentzian functions, fr,(v).

The Gaussian and Lorentzian probability densities are:

— 2 . ,—4log(2)(v—v )2/F2
fo) = e /T (12)
)= % e (13)



where 1y is the center energy (or frequency) and the width is expressed using
Full width at half mazimum (FWHM) I71, and I'g. The natural logarithm is
denoted log, as in Matlab.

Self-test. Confirm numerically that the density functions in Eq. (I2) and
(I3) really are normalized and have FWHM [I7, and .

Both Gaussian and Lorentzian functions have the property that when
convolving two Gaussians the result is also a Gaussian, and when convolving
two Lorentzians the result is a Lorentzian. This means that all the inhomo-
geneous broadening contributions can be combined into one Gaussian, and
all the homogeneous into one Lorentzian.

For instance, the total instrumental line broadening is the convolution of
monochromator and spectrometer broadening, both Gaussian with FWHM
I, and I respectively.

Exercise 7. Demonstrate numerically for a few values that the relation
IE=T3+1I7 (14)

holds for GaussiansE If you want to, you can prove it analytically instead,
but the numeric exercise may be a good preparation for the later exercises.
Hint: You are supposed to compute the convolution numerically and in
some way read out the FWHM. Type doc conv in the MATLAB window
to get more information of how the conv(A,B) command works. A simple
self-test could be to use it to solve Exercise [] again.

3.4 Doppler broadening

Doppler broadening is the broadening of spectral lines due to the Doppler
effect in which the thermal movement of atoms or molecules shifts the ap-
parent frequency of each emitter. The many different velocities, v, of the
emitting gas particles are following the Mazwell distribution

_ m _—mv?/(2kgT)
far(v) “27rkBT e ) (15)

In the non-relativistic regime, the Doppler shift in frequency must be pro-
portional to the velocity according to v = (1 + ), with c as the speed of
light, meaning that the Doppler profile also is a Gaussian. The broadening
is dependent only on the energy of the transition, v, the mass of the emit-
ting particle, m, and the temperature, T', and can therefore be a method for

2Note: this relation for the Normal distribution is one explanation of why you add
the square of independent uncertainties in the “error propagation” formula to get a total
uncertainty (In Swedish: felberdkning/felfortplantning).



measuring the temperature of a known gas. The standard-deviation, op, of
the Doppler profile is [11]

kgT
op = 2y [ (16)
cV m
where kg is Boltzmann’s constant. The FWHM, I', of a Gaussian (Normal)

distribution is related to ¢ by I' = 24/2 - log2 - 0.

3.5 Voigt function

The convolution of Gaussian and Lorentzian gives the Voigt density fq 1(v),
that has two parameters to describe its shape.

The pressure contribution is rather small and can usually be neglected.
Therefore I7, is the natural line-width which is useful since it, with the help
of Heisenberg’s uncertainty relation, can give the lifetime of the state. The
Doppler contribution is also often quite small, so that I is close to the
overall instrumental broadening.

Exercise 8. Start with creating a Gaussian and a Lorentzian density func-
tion distributed around zero. Let I'g and I1, be 0.050. Now, convolve the
normalized Gaussian and Lorentzian peaks into a Voigt peak. This you can
do either by using the expression Eq. (II]) or by using the Matlab command
conv(A, B). Now plot the normalized result from the convolution together
with the Lorentzian (natural line profile) and the Gaussian (instrumental
line profile). Redo this for different instrumental broadenings (for example
I'c = 0.005 or 0.10). What has happened to the distribution?

4 Data analysis

4.1 Preparatory task

Now we are ready to fit a real experimental photoelectron spectrum. If you
want to, you can practice on the spectrum of Ar 3p which is a bit simpler
than the CO-spectrum, because the peaks are well separated and only two.

If you design a program for automatic fitting in a smart way, e.g. accept-
ing a list of approximative (read out manually) peak center energies and a
guess for the width-parameters, it may be helpful to test it on this simple
spectrum and then re-use it for the carbon monoxide data. Once the pro-
gram works, fitting more peaks shouldn’t require much more work from you.
On the other hand, if you want to make a less sophisticated program where
you feel that the more peaks you fit the more manual work is involved, then
perhaps you should skip this exercise.

Self-test. The file Ar 3p.txt contains a photoelectron spectrum of the
argon 3p spin-orbit split lines. The first column is binding energy (ionization



energy) in electronvolts and the second is intensity in an arbitrary unit. Find
the energies and both the Gaussian and the Lorentzian FWHM of the lines
by fitting a Voigt function in each peak, or even better, fit a sum of two
different Voigt functions to the full spectrum. You can compare the energies
to the expected ones [12] to name them.

Hint: To get the fitting as good as possible you want the residual sum of
squared errors, . (d; — f;)?, to be as small as possible. d; is the experimental
data and f; is the fitted data, at the energy of frequency v;.

Hint: fitting_example.m shows three ways of fitting functions to data in
Matlab and can be used as a starting point, although you are free to solve
the task in other ways.

4.2 Carbon monoxide experiment

The experimental work on carbon monoxide is unfortunately already done,
since it is difficult to obtain beamtime for this kind of educational work
on research equipment. When using a spectrometer at a multi-user facility
such as MAX-II, the instrumental line-broadening mechanisms are usually
know with some accuracy. In table [, these broadenings are specified. As
stated in section [B.3], you can assume the Doppler and pressure broadenings
are negligible. If you want to, you can try to determine also the Doppler
contribution and discuss that result.

The files CO_Cls.txt and CO _valence.txt contain photoelectron
spectra from CO core and valence ionization. For the valence, 120 eV photon
energy was used while for the core ionization 360 eV was used. The data
files contain one column with binding energy (ionization energy) [eV] and
one with intensity [arbitrary unit, maybe number of counts].

Exercise 9. Now analyze this data! See page [2 for a list of properties that
you can get info about. Hint: In the ground state, CO has the equilibrium
distance 1.1283 A, and the vibration frequency 2170.2 cm™!.

Exercise 10. Discuss differences in the measured parameters between the
various electronic states, such as lifetime and vibrational frequency. What
can be said about valence electrons’ orbital wavefunctions based on these
results?

3Because someone has calibrated and tested the instrument before us.

Table 1: Full width at half max (FWHM) of instrumental line-broadening contributions
for monochromator Iy, and spectrometer I's. Exercise [ gives 1.

Photon energy [eV] | I [eV] | I [eV] | Ia [eV]
120 eV 0.015 0.025 0.029
360 eV 0.077 0.076 0.108
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Write a report with answers to all exercises and some more explanation
about how you did to solve the non-trivial ones. You should at least in-
clude the interesting parts of program source code. If your descriptions and
programs are clearly presented it can be possible for the examiner to help
you or give you scores even when you did a small mistake, while this is not
possible if strange results are presented without motivation. If you think it
is too much to print, you can e-mail the full programs in a zip-file. Either
way, the report should be scientifically understandable without looking at
program attachments.

It is always nice to compare to previous experiments, so you have an idea
about what to expect and can build upon existing knowledge. Figure 2lis a
copy from a book [I] with reference data about valence states in CO and a
calibrated photoelectron spectrum taken with a He I discharge lam.
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{9) CO Carbon Monoxide

1
2,3
4
_JI 1 e 1
14 16 18 20
Ionization Energy (eV)
Exptl.® SCF MO [6-31G]» CI (Tonic State) [6-31G]®
I,(&V) —eleV) MO Character E(eV) State Configuration
1 14.01 14.99 50 (T) oo 13.11  122*  0.93(7T"Y)
~0,15(671, 77, 94),
-0.15(571, 74,81,
2 16,91 17.48
1z (6,5) 7 vond 16.69 12T 0.95(67%) ; 0.95(5-1)
16.91 17. 48

4 19.72 21.69 40 (4) . ng 19.29 222+ 0.92(4™)
’ ’ +0,16(671, 771, 94)
+0.16(571,7°1,8),

a) The spectrum : this work, The I,’s: Turner ef al. (215). See also other works : Turner
and May (215a); Carlson and Jonas (54) ; Gardner and Samson (104} ; Edqvist ef al. (90) ;
Potts and Williams (182a) ; and Natalis et al, (165).

b) We used the bond length reported (A 3) ; symmetry C.p. Egor=—112, 6672 hartree. In 4-31G
calculations, Egop=-112,5524 hartree and —e(eV)=14. 93, 17.41, 17.41, and 21.60,

¢) CI-IL. (9, 8)=1m. |N>=0.98(SCF). The results obtained in other CI levels are given in
Appendix B.

C.E.ogggaém 1 o0 <

vacant) {vacant)

Figure 2: Calibrated photoelectron spectrum of CO valence states taken with a Hel-
discharge lamp [I].
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