
Chapter 1

Brief introduction to molecular
symmetry

It is possible to understand the electronic structure of diatomic molecules
and their interaction with light without the theory of molecular symmetry.
But understanding molecular symmetry is essential, e.g., for the treatment
of selection rules in polyatomic molecules. In this course, we only present the
most basic elements of molecular symmetry, and we do it in a largely non-
mathematical way. See Chapter 5 in Molecular Quantum Mechanics (Atkins
and Friedman) for more details of the underlying mathematical theory: group
theory.

1.1 Symmetry operations and elements

A symmetry operation is an operation that leaves an object apparently
unchanged. For example, a rotation of a sphere through any angle around
its center is a symmetry operation. Every object has at least one symmetry
operation: the identity, the operation of doing nothing. To each symmetry
operation there corresponds a symmetry element, the point, line or plane
with respect to which the operation is carried out. In order to discuss the
symmetry of molecules, we need five symmetry elements.

I or E The identity operation, the act of doing nothing. The corresponding
symmetry element is the object itself.

Cn An n-fold rotation, a rotation by 2π/n around an axis of symmetry.
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Figure 1.1: Examples of the Cn axes of rotation.

If an object has several axes of rotation, the one with the largest value
of n is called the principal axis. In this course, we assume that the
rotations are performed clockwise, when viewed from above.

σ A reflection in a mirror plane. When the mirror plane includes the
the principal axis of symmetry, it is called a vertical plane and denoted
σv. If the principal axis is perpendicular to the mirror plane, the latter
symmetry element is called a horizontal plane (σh). A dihedral plane
(σd) is a vertical plane that bisects the angle between two C2 axes that
lie perpendicular to the principal axis.

i An inversion through a centre of symmetry.

Sn An improper rotation through an axis of improper rotation. An
improper rotation is a composite operation, where an n-fold rotation is
followed by a reflection in a plane that is perpendicular to the n-fold
axis. Neither operation alone is in general a symmetry operation, but
the overall outcome is.
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Figure 1.2: Symmetry elements of the (a) H2O and (b) BF3 molecules.

1.2 The classification of molecules

To classify a molecule according to its symmetry, we list all of its symmetry
operations, and then ascribe a label, the point group to the molecule based
on the list of those operations. The term ’point’ indicates that after perform-
ing all the operations of the point group, at least one point of the molecule
does not move at all. For the notation we use the Schoenflies system, where
the name of the point group is based on a dominant feature of the symmetry
of the molecule.

The point groups are:

1. The groups C1, Cs and Ci. These groups consist of the identity alone
(C1), the identity and reflection (Cs), and the identity and an inversion
(Ci).

2. The groups Cn. These groups consist of the identity and an n-fold
rotation.

3. The groups Cnv In addition to the operations of the groups Cn, these
groups also contain n vertical reflections. An important example is
the group C∞v, the group to which heteronuclear diatomic molecules
belong.

4. The groups Cnh. In addition to the operations of the groups Cn, these
groups also contain a horizontal reflection (together with whatever op-
erations the presence of the operations implies).

2



5. The groups Dn. In addition to the operations of the groups Cn, these
groups possess n two-fold rotations perpendicular to the n-fold (prin-
cipal) axis (together with whatever operations the presence of the op-
erations implies).

6. The groups Dnh. These groups consist of operations present in Dn,
together with a horizontal reflection (and together with whatever oper-
ations the presence of the operations implies). An important example
is the group D∞h, the group to which homonuclear diatomic molecules
belong.

7. The groups Dnd. These groups consist of operations present in Dn and
n dihedral reflections (together with whatever operations the presence
of the operations implies).

8. The groups Sn, with n even. These groups contain the identity and
an n-fold improper rotation (together with whatever operations the
presence of the operations implies).

9. The cubic (T, Th, Td, O,Oh) and icosahedral (I, Ih) groups. These groups
contain more than one n-fold rotation with n ≥ 3.

10. The full rotation group, R3. The group consists of all rotations through
any angle and in any orientation. This is the symmetry group of the
sphere and atoms.

1.3 Calculus of symmetry elements

In the list above, we have indicated that the presence of certain symmetry
operations implies that some other symmetry operations automatically ex-
ist. For example, the point group C2h automatically possess an inversion,
because a rotation by 180◦ followed by a horizontal reflection is equivalent
to inversion. This can be written as an equation

σhC2 = i. (1.1)

It is a general feature of symmetry operations that the outcome of a joint
symmetry operation is always equivalent to a single symmetry operation

RS = T, (1.2)
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where R, S and T all are symmetry operations of the group. The operation
S is carried out first, R after that.

We can say that σh and C2 generate the element i; they can be regarded
as generating elements. We can generate other elements from the symmetry
element Cn by raising it to the power of 1, 2, 3, . . . , (n-1). For example, if
there is an element C3, there must be also C2

3 , where

C2
3 = C3 × C3. (1.3)

C2
3 is a rotation clockwise by 2 × (2π/3) radians. It also corresponds to a

rotation counterclockwise by (2π/3), which can labeled with a symbol C−1
3 .

This is the inverse of the operation C3. Generally

Cn−1
n = C−1

n . (1.4)

We can also generate the powers of Sn from the element Sn. For example,
we obtain for S4

S2
4 = C2

S3
4 = S−1

4 ,
(1.5)

where S−1
4 means a counterclockwise rotation by 2π/4 rad followed by a

reflection. The inverse σ−1 of the reflection is the reflection itself.
The properties of the symmetry operations in point groups fulfil the same

requirements that are necessary for a set of entities to form a group in math-
ematics. Consequently, the mathematical theory of groups, group theory,
may be applied to the study of the symmetry of molecules.

1.4 Character tables

Point groups are either non-degenerate or degenerate. A degenerate point
group contains a Cn axis with n > 2 or an S4 axis. A molecule belonging to
such a point group may have degenerate properties, e.g., electronic wavefunc-
tions or vibrational wavefunctions that have the same energies. A molecule
that belongs to a non-degenerate point group cannot have degenerate prop-
erties.

We have seen how molecules can be classified into point groups according
to the locations of their nuclei in the equilibrium geometry. Molecules can,
however, have properties such as the above mentioned wave functions that
do not have all the symmetry elements of the point group. Character tables
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are used to classify the symmetries of these properties. We will inspect the
character tables of the C2v, C3v and C∞v point groups. The first of them is
non-degenerate, the second degenerate and the third an example of a point
group with an infinite number of symmetry elements.

1.4.1 The C2v character table

For example, the vibrational wavefunction of H2O may or may not have
a certain symmetry element. If it has the element, the application of the
corresponding symmetry operation does not affect the wavefunction, which
we can write

ψv
σv−→(+1)ψv (1.6)

and say that ψv is symmetric with respect to σv. The only other possibility
in a non-degenerate point group is that the wavefunction changes sign in the
operation

ψv
σv−→(−1)ψv, (1.7)

in which case ψv is antisymmetric with respect to σv. The numbers +1 and
-1 appearing in equations (1.6) and(1.7) are known as the characters of ψv
with respect to σv (in this particular case).

Any two of the elements C2, σv(xz) and σ′v(yz) can be regarded as gen-
erating elements. There are four possible combinations of characters with
respect to these generating elements: +1 and +1, +1 and -1, -1 and +1, and
+1, -1, -1. These are listed in the third and fourth columns of the character
table below. We have selected C2 and σv(xz) as the generating elements. The
characters under I have to be always 1. Just as σ′v(yz) can be generated by
C2 and σv(xz), the characters under σ′v(yz) are the products of the characters
under C2 and σv(xz). Each of the four rows of the characters is called an
irreducible representation of the group and are labeled for practicality with
the symmetry species A1, A2, B1 and B2. The A1 is said to be totally
symmetric because all of its characters are +1. The three other species are
non-totally symmetric.

The notation of the symmetry species follows the convention. A indicates
the symmetry with respect to C2, B antisymmetry. The subscripts indicate
symmetry (1) and antisymmetry (2) with respect to σv(xz).

In the sixth column of the character table, the symmetry species are given
for the translations (T ) of the molecule along the coordinate axes and for the
rotations (R) around the axes. In Fig. 1.4 the vectors attached to the nuclei
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Table 1.1: The character table of the C2v point group.
C2v I C2 σv(xz) σ′v(yz)
A1 1 1 1 1 Tz αxx, αyy, αzz
A2 1 1 -1 -1 Rz αxy
B1 1 -1 1 -1 Tx, Ry αxz
B2 1 -1 -1 1 Ty, Rx αyz

of the H2O molecule represent these displacements, which have the symmetry
species according to how they behave under the operations C2 and σv(xz).
Figures 1.4(a) and (b) show that

Γ(Tx) = B1; Γ(Ty) = B2; Γ(Tz) = A1 (1.8)

Γ(Rx) = B2; Γ(Ry) = B1; Γ(Rz) = A2. (1.9)

The symbol Γ stands generally for a representation. In this case it is an
irreducible representation of the symmetry species. The symmetry species
of the translations are needed, when selection rules of electronic transitions
are determined for polyatomic molecules. The symmetry species for the
components of the symmetric polarizability tensor α, given in the last column
of the character table, are needed in Raman spectroscopy.

Let us look at an N -atomic molecule. 3N coordinates are needed to
specify its location accurately, i.e. three Cartesian coordinates for each atom.
Each atom may change its location by varying one of its three coordinates, so
the total number of displacements available is 3N . We say that the molecule
has 3N degrees of freedom. These can be arranged in a physically sensible
way. Three coordinates are needed to specify the location of the centre of
mass along the coordinate axes (translational degrees of freedom). Further-
more, three coordinates are needed to specify the orientation of the molecule
with respect a coordinate system that is fixed in space. The movement about
these coordinates corresponds to the rotational motion of the molecule (ro-
tational degrees of freedom). The remaining 3N − 6 coordinates represent
the movements of the nuclei with respect to each other, that is vibrations
(vibrational degrees of freedom). Linear molecules have, however, 3N − 5
vibrational degrees of freedom, because the moment of inertia about the
molecular axis is zero and the corresponding rotational motion has no degree
of freedom.
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Figure 1.3: The (a) translations and (b) rotations of the H2O molecule.

The molecule has the same number of normal modes (of vibration) as
it has vibrational degrees of freedom. A normal mode means an idealized
vibrational motion where all the nuclei move harmonically with the same
frequency and phase, but generally with different amplitudes. Every normal
mode has its characteristic frequency. Every vibrational motion of a molecule
can be represented as a sum of normal modes.

The H2O molecule has thus three normal modes, which are shown in Fig.
1.5. The arrows fixed to the nuclei indicate the directions and amplitudes
of the displacements. The symmetry species of each vibration can be de-
termined using the C2v character table. We obtain the following characters
under the operations C2 and σv(xz): +1 and +1 for ν1, +1 and +1 for ν2,
and -1 and -1 for ν3. Therefore

Γ(ψν(1)) = A1; Γ(ψν(2)) = A1; Γ(ψν(3)) = B2. (1.10)

The classification of molecular properties into the symmetry species de-
pends on the choice of the axes. The convention for a planar molecule of
C2v symmetry is that the z axis is parallel to the C2 axis and the x axis is
perpendicular to the molecule. We follow this convention. If we interchanged
x and y axes, then Γ(ψv(3)) would be B1, not B2. It is important to mark
the axes chosen on the picture.
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Figure 1.4: The normal modes of the H2O molecule.

Figure 1.5: The normal modes of formaldehyde.

Example 1.1. Formaldehyde is a planar molecule and it has six normal modes
that can be roughly illustrated as in the figure below. Determine the symmetry
species of the normal modes in the proper point group using the axes drawn on
the picture.

Solution. Formaldehyde belongs to the C2v point group. Using the C2v character
table, the characters of the vibrations can be classified as shown on the following
page.

It follows from these that symmetry species Γ(ψv) of the vibrations are:

Γ(ψv(i)) = A1

Γ(ψv(ii)) = B2

Γ(ψv(iii)) = A1

Γ(ψv(iv)) = B2

Γ(ψv(v)) = A1

Γ(ψv(vi)) = A2

The classification can be done using any two of the symmetry elements C2,
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Table 1.2: The characters of the normal modes of formaldehyde.
Vibration I C2 σv(xz) σ′v(yz)
(i) 1 1 1 1
(ii) 1 -1 -1 1
(iii) 1 1 1 1
(iv) 1 -1 -1 1
(v) 1 1 1 1
(vi) 1 -1 1 -1

σv(xz) and σ′v(yz), because they generate the third one and the character under
E is always 1 in this point group.

These vibrations can be described with terms: (i) symmetric CH stretch, (ii)
antisymmetric CH stretch, (iii) CH2 scissors, (iv) CH2 rocking, (v) CO stretch and
(vi) out-of-plane bending.

Often we have to multiply symmetry species, or as expressed in the lan-
guage of group theory, form their direct product. For example, if one quan-
tum is excited in both the ν1 and ν3 modes, the symmetry species of the
wavefunction of this state is

Γ(ψv) = A1 ×B2 = B2. (1.11)

In order to form the direct product of two symmetry species we multiply the
characters under each symmetry element using the rules

(+1)× (+1) = 1; (+1)× (+1) = −1; (−1)× (−1) = 1. (1.12)

The result of Eq. (1.11) has been obtained in this way. If two ν3 quanta are
excited in H2O

Γ(ψv) = B2 ×B2 = A1. (1.13)

The results of multiplications in Eqs. (1.11) and (1.13) generally apply to
non-degenerate point groups. Thus (a) the product of any symmetry species
with a totally symmetric species does not change the symmetry species and
(b) the product of any symmetry species with itself gives a totally symmetric
species.

It can also be shown that in the C2v point group

A2 ×B1 = B2; A2 ×B2 = B1. (1.14)
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Table 1.3: The C3v character table.
C3v I 2C3 3σv
A1 1 1 1 Tz αxx + αyy, αzz
A2 1 1 -1 Rz

E 2 -1 0 (Tx, Ty), (Rx, Ry) (αxx − αyy, αxy), (αxz, αyz)

Figure 1.6: In the C3v point group the elements C3 and C2
3 belong to the

same class.

1.4.2 The C3v character table

The character table of the C3v is given above. There are two obvious differ-
ences from the character tables of any non-degenerate point groups. Firstly,
the elements of the same class are grouped together, namely C3 and C2

3 →
2C3, and σv, σ

′
v and σ′′v → 3σv.

Two elements P and Q belong to the same class, if there is a third element
so that

P = R−1 ×Q×R. (1.15)

From Fig. 1.6 we see that in the C3v point group

C3 = σ−1
v × C2

3 × σv (1.16)

and therefore C3 and C2
3 belong to the same class. The symmetry elements

belonging to the same class have the same characters. The number of the
symmetry species is equal to the number of the classes. This also applies to
non-degenerate point groups, where each element forms its own class.

The other difference in the character table is the appearance of the doubly
degenerate symmetry species E. Its characters are not always +1 or -1, in
contrast to those in non-degenerate point groups.
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Figure 1.7: The normal modes of the NH3 molecule.

The characters of the symmetry species A1 and A2 have the same meaning
as in the non-degenerate point group. The characters of the symmetry species
E can be understood from the example of the normal modes of the NH3

molecule, shown in Fig. 1.7. The vibrations ν1 and ν2 are clearly of the species
a1 (A recommendation: small letters are used for the symmetry species of
the vibrations and electron orbitals, whereas capital letters are used for the
symmetry species of the corresponding wavefunctions.) The vibrations ν3a

and ν3b are degenerate; it requires the same amount of energy to excite one
quantum in either of them, but they clearly have different wavefunctions.
Similarly, ν4a and ν4b are degenerate.

Normal coordinates are such a set of coordinates for a coupled system that
the equations of motion only contain one of these coordinates. The symmetry
properties of the vibrational wavefunction ψv are identical to those of the
corresponding normal coordinate. If in the C3v point group the C3 operation
is applied to Q1, which is the normal coordinate of the ν1 vibration, it changes
to Q′1, where

Q1
C3−→Q′1 = (+1)Q1. (1.17)

If the symmetry operation is applied to a degenerate normal coordinate, it
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doesn’t simply remain the same or change its sign, but generally changes
to a linear combination of two degenerate normal coordinates. Thus when
applying a symmetry operation S

Q3a
S−→Q′3a = daaQ3a + dabQ3b

Q3b
S−→Q′3b = daaQ3a + dabQ3b.

(1.18)

This can be written with the help of matrices(
Q′3a
Q′3b

)
=

(
daa dab
dba dbb

) (
Q3a

Q3b

)
(1.19)

The relation daa+dbb is called the trace of the matrix, and it is the character
of the property (in this case of the normal coordinate) with respect to the
symmetry operation S.

The character of the symmetry species E with respect to the identity I
can be obtained from the relations

Q3a
I−→Q′3a = 1×Q3a + 0×Q3b

Q3b
I−→Q′3b = 0×Q3a + 1×Q3b

(1.20)

or (
Q′3a
Q′3b

)
=

(
1 0
0 1

) (
Q3a

Q3b

)
(1.21)

The trace of the matrix is 2, which is the character of the symmetry species
E under I.

One of the two ν3 vibrations, ν3a, is symmetric in reflection through that
σv plane, which bisects the angle between H1 and H2, and the other vibration
is antisymmetric. We obtain(

Q′3a
Q′3b

)
=

(
1 0
0 −1

) (
Q3a

Q3b

)
(1.22)

Therefore the character of E under σv is 0. Because all the mirror planes are
equivalent, the character must be the same also under σ′v and σ′′v .

When the operation is a rotation by the angle φ around the Cn axis (in
this case φ = 2π/3 rad), the transformation of the coordinates becomes(

Q′3a
Q′3b

)
=

(
cosφ sinφ
− sinφ cosφ

)(
Q3a

Q3b

)
=

 −1
2

√
3
2

−
√

3
2
−1

2

(Q3a

Q3b

) (1.23)
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The trace of the matrix is -1, which is also the character of the symmetry
species E under C3.

Apart from E ×E, direct products are formed using the same rules as in
non-degenerate point groups: the characters of the product are obtained by
multiplying the characters of the symmetry species. We get

A1 × A2 = A2; A2 × A2 = A1; A1 × E = E; A2 × E = E. (1.24)

In the product E×E we again use the normal modes of the NH3 molecule as
an example. The result depends on whether we need a representation Γ(ψv),
when (a) one quantum of each vibration is excited or (b) when two quanta
of the same vibration are excited (= overtone). In the case (a), for example
for the combination ν3 + ν4, the product is written E × E and the result is
obtained by squaring the characters with respect to each operation

I 2C3 3σv
E × E 4 1 0

(1.25)

The characters 4, 1 and 0 span a reducible representation in the C3v point
group. We have to reduce it to a set of irreducible representations, whose
sum of the characters is the same as in the reducible representation. This
can be expressed as an equation

χC(k)× χD(k) = χF (k) + χG(k) + . . . (1.26)

where χ is the character of whatever operation k and the multiplication of
the degenerate symmetry species C and D gives the result

C ×D = F +G+ . . . (1.27)

The reduction of the representation E×E yields a unique set of irreducible
representations, which is

E × E = A1 + A2 + E. (1.28)

We can see from Table 1.3 that the sum of the characters of A1, A2 and E
under I, C3 and σv gives the irreducible representation of equation (1.25).

In the case (b), when two quanta of the same vibration are excited (e.g.,
2ν3), the product is written (E)2, where

(E)2 = A1 + E. (1.29)
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Table 1.4: TheC∞v character table.
C∞v I 2Cφ

∞ . . . ∞σv
A1 ≡ Σ+ 1 1 . . . 1 Tz αxx + αyy, αzz
A2 ≡ Σ− 1 1 . . . -1 Rz

E1 ≡ Π 2 2 cosφ . . . 0 (Tx, Ty), (Rx, Ry) (αxz, αyz)
E2 ≡ ∆ 2 2 cos 2φ . . . 0 (αxx − αyy, αxy)
E3 ≡ Φ 2 2 cos 3φ . . . 0
...

...
... . . .

...

This is called the symmetric part of E × E; it is symmetric to the particle
interchange. The result of Eq. (1.29) is obtained by forming first the product
E × E. One part of the product is forbidden. In a degenerate point group
it is an A symmetry species, and if possible a non-totally symmetric. In
the present case, the symmetry species A2 is forbidden and it forms the
antisymmetric part of the product E × E.

There are tables that give the symmetry species for all degenerate com-
bined vibrations in all degenerate point groups (See Appendix 1 in MQM).

1.4.3 The C∞v character table

The C∞v point group has an infinite number of classes, since the rotation
around the C∞ axis can be performed by whatever angle φ and each of the
elements Cφ

∞ belongs to a different class. However, C−φ∞ , a counterclockwise
rotation by φ belongs to the same class as Cφ

∞. Because the number of
classes is infinite, so is also the number of symmetry species. Their labels are
A1, A2, E1, E2, . . .E∞, if we follow the convention used in other character
tables. Unfortunately, another practice had been taken into use particularly
in electron spectroscopy of diatomic molecules before the notations for the
symmetry species had been widely accepted. The electronic states were given
symbols Σ, Π, ∆, Φ, . . . corresponding to the orbital angular momentum
quantum number Λ that can have values 0, 1, 2, 3, . . . (we will tell more
about Λ later). These latter symbols are predominantly used in the C∞v and
D∞h point groups. Both the systems are shown in the C∞v character table
above.

The multiplication of the symmetry species is performed following the
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usual rules. Thus, for example

Σ+ × Σ− = Σ−; Σ− × Π = Π; Σ+ ×∆ = ∆. (1.30)

The reducible representation of the product Π× Π is

I 2Cφ
∞ ∞σv

Π× Π 4 4 cos2 φ 0
(= 2 + 2 cos 2φ)

(1.31)

which is reduced as follows

Π× Π = Σ+ + Σ− + ∆. (1.32)

The same rule that was used to obtain (E)2 from E × E in the C3v point
group gives

(Π)2 = Σ+ + ∆. (1.33)

Example 1.2. List the symmetry elements of the following molecules: (a) 1,2,3-
trifluoro benzene, (b) 1,2,4-trifluoro benzene, (c) 1,3,5-trifluoro benzene, (d) 1,2,4,5-
tetrafluoro benzene, (e) hexafluoro benzene, (f) 1,4-dibromo-2,5-difluoro benzene.

A molecule has a permanent dipole moment if one or more of the symmetry
species of the translations Tx, Ty and Tz is totally symmetric. Apply this principle
for each molecule by using a relevant character table and draw the directions of
the dipole moments, if it 6= 0.

Solution. The picture on the next page
(a) In the C2v point group, Γ(Tz) = A1 (see table 1.1). Thus a permanent dipole
moment exists and its direction is along the C2 axis. Because of the large elec-
tronegativity of fluorine, the negative end δ− of the dipole is towards the fluorine
atoms and the positive end δ+ towards the hydrogen atoms.
(b) In the Cs point group, Γ(Tx, Ty) = A′ (totally symmetric). The dipole moment
is therefore on the xy plane. Symmetry doesn’t determine for it to be in any specific
direction in this plane. As compared to 1,2,3-trifluoro benzene, the transfer of a
fluorine atom from the place 3 to place 4 deviates the dipole moment towards the
place 4.
(c)-(f) These molecules don’t have permanent dipole moments, confirmed by the
relevant character tables.
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Chapter 2

Potential energy curves and
vibrations of diatomic
molecules

2.1 Harmonic oscillator

The model of two balls connected by a spring is sufficient to describe ap-
proximatively the vibration of a diatomic molecule. The stretching and con-
traction of the bond is represented by the change of the length of the spring.
Hooke’s law is valid for small deviations:

Restoring force = −dV (x)

dx
= −kx, (2.1)

where V is potential energy, k is force constant, whose magnitude describe
the strength of the bond, and x(= r−re) is the deviation from the equilibrium
bond length. Integration of this equation gives

V (x) =
1

2
kx2. (2.2)

Figure 4.1 shows V (r) as a function of r. The curve is a parabola.
The Hamiltonian operator of the one-dimensional quantum mechanical

harmonic oscillator is:

H = − h̄
2

2µ

d2

dx2
+

1

2
kx2, (2.3)
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Figure 2.1: The energy levels, wavefunctions and potential energy V (r) of
the harmonic oscillator.

where µ = m1m2/(m1+m1) is the reduced mass of the atoms. The Schrödinger
equation for the system is

d2ψv
dx2

+

(
2µEv

h̄2 − µkx2

h̄2

)
ψv = 0. (2.4)

It can be shown that
Ev = hν(v + 1/2), (2.5)

where ν is the classical frequency of the oscillator, which can be obtained
from

ν =
1

2π

(
k

µ

)1/2

. (2.6)

As expected, the frequency increases when the bond becomes stronger (when
k increases) and decreases when µ becomes larger. The vibrational quantum
number v can have values 0, 1, 2, ... .

According to Eq. (2.5) the vibrational energy levels are spaced by a con-
stant interval of hν and the lowest energy of the oscillator (when v = 0) is
not zero but 1

2
hν. This zero-point energy is the lowest energy that a molecule
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Table 2.1: Hermite polynomials.
v Hv(y) v Hv(y)
0 1 3 8y3 − 12y
1 2y 4 16y4 − 48y2 + 12
2 4y2 − 2 5 32y5 − 160y3 + 120y

can have even at absolute temperature of 0 K. It is a result of the uncertainty
principle.

The crossing points of an energy level with the potential energy curve
correspond to the classical turning points of vibration, where the velocities
of the nuclei are zero and all energy is in the form of potential energy. In the
middle point of each energy level all energy is conversely kinetic energy.

The solutions of Eq. (2.4) are wavefunctions

ψv =
(

1

2vv!π1/2

)1/2

Hv(y) exp(−y2/2), (2.7)

where Hv(y) is a Hermite polynomials and

y =

(
4π2νµ

h

)1/2

(r − re). (2.8)

Some of the Hermite polynomials are given in Table 4.1. Examples of
vibrational wavefunctions are presented in Fig. 4.1. We note the following
important properties of the wavefunctions:

1. They extend to the region outside of the parabola, which is forbidden
in a classical system.

2. When v increases those two points where the probability density ψ2

reaches its maximum value occur close to the classical turning points.
This is illustrated in Fig. 4.1 for the quantum number v = 28, with
A and B being the classical turning points. In contrast, for v = 0 the
highest probability density is in the middle of the region.

The force constant k can be regarded as a measure for the strength of the
bond. Table 4.2 gives some typical values in the units of aJ Å−2(= 102 N/m).
The values describe how k increases with the bond order. Molecules HCl,
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Table 2.2: The force constants of some diatomic molecules.

Molecule k [aJ Å−2] Molecule k [aJ Å−2] Molecule k [aJ Å−2]
HCl 5.16 F2 4.45 CO 18.55
HF 9.64 O2 11.41 N2 22.41
Cl2 3.20 NO 15.48

HF, Cl2 and F2 have single bonds and relatively low values of k even though
k of HF is exceptionally high. The bond orders of O2, NO, CO and N2 are
2, 21

2
, 3 and 3, respectively, and are reflected in the values of their force

constants. The force constant is affected by the delicate balance between
the attraction and repulsion forces in the molecule. These forces remain the
same in the isotopic substitution.

For vibrational levels, one often uses term values instead of energies. The
term values G(v) have the unit of wavenumber (cm−1)

G(v) =
Ev
hc

= ω(v +
1

2
), (2.9)

where ω is the wavenumber of vibration (often called improperly as vibra-
tional frequency).

Exercise 4.1. Calculate the reduced masses of (a) 1H81Br and (b) 1H127I. The
wavenumbers of the vibrations of these molecules are (a) 2648.98 cm−1 and (b)
2308.09 cm−1. Calculate the force constants of the bonds. Predict the vibrational
wavenumbers of the deuterium halides. m(81Br)=80.9163 u, m(127I)=126.9045 u,
m(1H)=1.0078 u, m(2H)=2.0141 u.

2.2 Anharmonicity

Figure 4.1 shows the potential energy, vibrational wavefunctions and en-
ergy levels of the harmonic oscillator. In reality, the vibrations of diatomic
molecules follow Hooke’s law, Eq. (4.1), relatively well only when the inter-
nuclear distance does not deviate largely from the equilibrium distance re,
i.e. when x is small. We know that the molecule dissociates at large values
of r: two neutral atoms are formed and they do not affect each other any
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Figure 2.2: The potential energy curve and energy levels of a diatomic
molecule when it behaves as an anharmonic oscillator. Dashed curves give
the same properties for a harmonic oscillator.

longer. Then the force constant is zero and r can be increased to infinity
without influencing the potential energy V . This is illustrated in Fig. 4.2.
The potential energy curve levels at a value V = De, where De is the dis-
sociation energy as measured from the potential energy at the equilibrium
distance. Thus for r > re, the potential energy becomes lower than in the
case of the harmonic oscillator. At small values of r, the positive charges
of the nuclei cause a repulsion that opposes bringing the nuclei closer each
other and the potential energy curve is steeper than that of the harmonic
oscillator.

Anharmonicity changes the wavefunctions and term values. The term
values of the harmonic oscillator in Eq. (4.9) become a power series in (v +
1/2)

G(v) = ωe(v +
1

2
)− ωexe(v +

1

2
)2 + ωeye(v +

1

2
)3 + . . . (2.10)

where ωe is the vibrational wavenumber that a classical oscillator would
have infinitely close to the equilibrium position. ωexe, ωeye . . . are anhar-
monicity constants. The terms ω, ωexe, ωeye . . . in the series (2.10) become
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fast smaller. For example for HCl ωe=2990.946 cm−1, ωexe=52.8186 cm−1,
ωeye=0.2244 cm−1 and ωeze=-0.0122 cm−1. The value of ωexe is always posi-
tive, which makes the energy levels to approach each other when v increases.
These energy levels are compared with those of the harmonic oscillator in
Fig. 4.2. The levels of the anharmonic oscillator converge to the dissociation
limit De, above which they have a continuous distribution (continuum).

ωe can no longer be measured directly. The wavenumber differences
∆Gv+1/2 for vibrational transitions (v+1)−v are obtained from the equation

∆Gv+1/2 = G(v + 1)−G(v)
= ωe − ωexe(2v + 2) + ωeye(3v

2 + 6v + 13
4

) + . . .
(2.11)

The wavenumbers of at least two transitions (e.g. G(1) − G(0) = ω0 and
G(2)−G(1) = ω1) are required to determine ωe and ωexe.

For the dissociation energy De

De '
ω2
e

4ωexe
, (2.12)

where the approximately sign results from the neglect of the anharmonicity
constants other than ωexe.

Example 4.1 Calculate ωe, ωexe and dissociation energy De for the electronic
ground state of the CO molecule from the following differences between the vibra-
tional levels:

v′ − v′′ 1− 0 2− 1 3− 2 4− 3 5− 4 6− 5
G(v + 1)−G(v)[cm−1] 2143.1 2116.1 2088.9 2061.3 2033.5 2005.5

Solution. By neglecting ωeye and higher terms in Eq. (2.11) we obtain

G(v + 1)−G(v) = ωe − 2ωexe(v + 1).

We draw G(v + 1)−G(v) as a function of (v + 1), which produces a straight line
with a slope of −2ωexe and a crossing point of ωe with the y-axis.

Fitting a straight line to the points with a computer gives

ωe = 2171.4± 0.4 cm−1

ωexe = 13.8± 0.1 cm−1

The given uncertainties are standard deviations. The dissociation energy

De '
ω2
e

4ωexe
' 85400 cm−1 ' 10.6 eV.
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Experimentally, the dissociation energy can only be measured with re-
spect to the zero-point energy D0. It is obvious from Fig. 4.2 that

D0 =
∑
v

∆Gv+1/2. (2.13)

Experimental values for ∆Gv+1/2 with large quantum numbers of v can-
not generally be determined with infrared and Raman spectroscopy, because
the intensities of the transitions with ∆v = ±2,±3, . . . are weak and the
populations of highly excited vibrational states is low. Information about
higher vibrational levels can mostly be obtained from transitions between
electronic states.

The dissociation energy De is the same for the different isotopes of the
same molecule because the potential energy curve and, consequently, the
force constant do not depend on the neutron number. On the other hand,
the vibrational energy levels change, as ω depends on the mass as µ−1/2 (µ
is the reduced mass), resulting in the change of D0 in different isotopes.

Morse suggested in 1929 that

V (x) = De[1− exp(−ax)]2 (2.14)

would be a useful potential energy function for an anharmonic oscillator. In
the Morse potential a and De are characteristic constants of the electronic
state. For this function, V (x) → De, when x → ∞, as it should. On the
other hand, when r → 0 (i.e. x→ −re), V (x) becomes large but not infinite.
This deficit in the Morse potential is not very serious, since the region where
r → 0 is not experimentally important. The vibrational term values obtained
using the Morse potential only include the terms (v+ 1/2) and (v+ 1/2)2 in
Eq. (4.10). Even though the quantitative use of the potential is limited, its
ease of use has made it popular compared to more accurate, but also more
complicated functions.

2.3 The potential energy curves of excited

states

Each excited electronic state has its own potential energy curve, which in
most cases looks similar to the potential energy curve of the ground state.
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Figure 2.3 shows the potential energy curves for the ground state and ex-
cited electronic states of the short-lived molecule C2. The ground electron
configuration of C2 is

(σg1s)
2(σ∗u1s)

2(σg2s)
2(σ∗u2s)

2(πu2p)
4(σg2p)

0, (2.15)

which gives the ground state X1Σ+
g . The lowest electronic states are formed

from the electron configurations when an electron from the πu2p- or σ∗u2s-
orbital has been promoted to the σg2p-orbital. The information in Fig. 2.3
has been obtained by observing absorption and emission spectra using dif-
ferent techniques.

When C2 dissociates the two carbon atoms released can be either in the
ground state or in excited states. The ground electron configuration of the C
atom, 1s22s22p2, gives three terms 3P , 1D and 1S in the order of increasing
energy. Figure 2.3 shows that six of the states of C2 dissociate producing
both C atoms with term 3P . Other states give dissociation products where
one or both of the carbon atoms have the term symbols 1D or 1S.

Like in the ground state, a molecule can vibrate and rotate in the elec-
tronically excited states. The total term value (or total energy)

S = T +G(v) + F (J), (2.16)

is the sum of the electronic term value T , vibrational term value G(v) and
rotational term value F (J). The vibrational term value can be obtained
from Eq. (4.10), but the wavenumber ωe and the anharmonicity constants
ωexe, ωeye, . . . are different for different excited states. Figure 2.3 also shows
that the equilibrium distances re are different.
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Figure 2.3: The potential energy curves of the C2 molecule for the ground
state and several excited states.
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Chapter 3

Electronic transitions in
diatomic molecules

3.1 On the coupling of angular momenta

The orbital motion and spin of each electron induce magnetic momenta that
behave like small bar magnets. The way in which magnets interact with
each other corresponds to coupling of angular momenta. For all diatomic
molecules, the coupling mechanism that describes best the electronic states
is similar to the LS coupling in atoms. We have already already talked about
this in Chapter 2. Figure 5.1(a) shows how the orbital angular momenta of
each electrons are coupled together to form the resultant L whose component
along the internuclear axis is Λh̄. Similarly, the spins of individual electrons
couple to give S to give the component Σh̄ along the axis. The quantum
number Σ can have values

Σ = S, S − 1, . . .− S. (3.1)

S remains a good quantum number.
We can couple Λh̄ and Σh̄ together to get the component of the total

angular momentum along the axis, Ωh̄. This way of coupling is known as
Hund’s case (a). The quantum number Ω can be obtained from the equation

Ω = Λ + Σ. (3.2)

For the 2Π molecule NO, for instance, for which Λ = ±1 and Σ = ±1
2
, Ω can

take the values ±1
2
,±3

2
. Term symbols are written in this case as 2Π 1

2
and

2Π 3
2
.

26



Figure 3.1: (a) Hund’s case (a) and (b) Hund’s case (c) to couple the total
angular momentum and total spin of a diatomic molecule.

Hund’s case (a) is the most common, but it is still an approximation,
as all couplings of angular momenta. If a molecule has at least one heavy
nucleus, the spin-orbit interaction is so strong that the electron spin and
angular momenta couple to give the resultant J. This angular momentum has
a component Ωh̄ on the internuclear axis, so Ω is a good quantum number,
but Λ and Σ are not. This coupling approximation is known as Hund’s case
(c) and it is presented in Fig. 3.1(b).

3.2 Selection rules in general

The selection rules for the orbital parts of the wavefunctions of two elec-
tronic states depend totally on symmetry properties. Electronic transitions
are mainly caused by the interaction of the electronic component of electro-
magnetic radiation with a molecule. The selection rules are therefore for the
electric dipole transitions.

The intensity of an electronic transition is proportional to the square of
the transition dipole moment Re, where

Re =
∫
ψ′∗e µ̂ψ

′′
edτe. (3.3)

For an allowed transition |Re| 6= 0. The symmetry requirement is

Γ(ψ′e)× Γ(µ)× Γ(ψ′′e ) = A (3.4)
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for a transition between non-degenerate states and

Γ(ψ′e)× Γ(µ)× Γ(ψ′′e ) ⊃ A (3.5)

for a transition between states, from which at least one is degenerate. The
symbol ⊃ means ’is included’. A is the totally symmetric symmetry species
of the point group in question.

The components of the transition dipole moment Re along the Cartesian
axes are

Re,x =
∫
ψ′∗e µxψ

′′
edτe

Re,y =
∫
ψ′∗e µyψ

′′
edτe

Re,z =
∫
ψ′∗e µxψ

′′
edτe.

(3.6)

Since
|Re|2 = (Re,x)

2 + (Re,y)
2 + (Re,z)

2, (3.7)

an electronic transition is allowed, if any of the terms Re,x, Re,y or Re,z is
different from zero. Thus, we must have for a transition to be allowed

Γ(ψ′e)× Γ(Tx)× Γ(ψ′′e ) = A
and/or Γ(ψ′e)× Γ(Ty)× Γ(ψ′′e ) = A
and/or Γ(ψ′e)× Γ(Tz)× Γ(ψ′′e ) = A

(3.8)

when a transition is between non-degenerate states. Tx, Ty, and Tz are the
translations along the respective axes. In case of a degenerate state, ’=’ is
replaced by ’⊃’ in the above equation.

If the product of two symmetry species is totally symmetric, the symme-
try species must be the same. Thus Eq. (3.8) can be written

Γ(ψ′e)× Γ(ψ′′e ) = Γ(Tx) and/or Γ(Ty) and/or Γ(Tz). (3.9)

If a degenerate state is involved, ’=’ is replaced by ’⊃’ in the above equa-
tion. This is a general selection rule for an electronic transition between two
electronic states.

3.2.1 Selection rules for diatomic molecules

The dipole selection rules for diatomic molecules can be summarized (apart
from the spin selection rule, they can be obtained from the above treatment):

1. ∆Λ = 0,±1 (5.10)
For example, Σ−Σ, Π−Σ and ∆−Π transitions are allowed but ∆−Σ
or Φ− Π transitions are not allowed.
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2. ∆S = 0 (5.11)
This selection rule breaks down when the nuclear charge becomes large.
For example, triplet-singlet transitions are absolutely forbidden in H2,
but in CO the a3Π−X1Σ+ transition is observed but weak.

3. ∆Σ = 0; ∆Ω = 0,±1 (5.12)
between the components of the same multiplet.

4. +←→ −; +←→ +; − ←→ − (5.13)
This is relevant only for Σ−Σ transitions so that Σ+−Σ+ and Σ−−Σ−

transitions are allowed.

5. g ←→ u; g ←→ g; u←→ u (5.14)
For example, Σ+

g − Σ+
g transitions are forbidden, but Σ+

u − Σ+
g and

Πu − Σ+
g are allowed.

In Hund’s case (c) (Fig. 3.1b) the selection rules are slightly different.
The rules (5.11) and (5.14) still valid, but since Λ and Σ are no longer good
quantum numbers, the rules (5.10) and (5.12) do not work. The applicability
of the rule (5.13) becomes more limited.

Exercise 5.1. Using Eq. (3.8) or Eq. (3.9) show that a Σ+
g → Σ+

u is allowed in
a diatomic homonuclear molecule (like O2). The relevant character table is given
on page 25. Note that the translations are marked as x, y, and z in that table.

3.3 Vibronic transitions

Figure 3.2 displays the vibrational energy levels related to two electronic
states. We assume that the electronic transition between the states is allowed.
The vibrational levels of the upper (lower) states are denoted with quantum
numbers v′ (v′′). In the electronic spectrum, there are no selection rules that
would limit the value of ∆v, but the Franck-Condon principle set the limits
for the intensities of the transitions.

Vibrational transitions that occur during electronic transitions are called
vibronic transitions. These vibronic transitions (with related rotational tran-
sitions) give rise to bands in the spectrum. A set of bands belonging to one
electronic transitions is called an electronic band system. Vibronic transitions
can be divided into progressions and sequences that have been illustrated in
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Figure 3.2: Progressions and sequences in the electron spectrum of a diatomic
molecule.

Fig. 3.2. A progression includes a series of vibronic transitions that have a
common upper or lower vibrational level. A group of vibrations for which
∆v is constant forms a sequence.

A symbol to denote a vibronic transition is v′ − v′′ where v′ and v′′ are
the vibrational quantum numbers of the upper and lower states, respectively.
This follows the convention in spectroscopy. Thus a purely electronic transi-
tion is written 0− 0.

3.4 The Franck-Condon principle

In 1925, before the presentation of the Schrödinger equation, Franck studied
different intensity distributions of vibronic transitions. His conclusions were
based on the fact that the electronic transition takes place much faster than
the vibration of the molecule. Therefore in a vibronic transition the nuclei
have very accurately the same locations and velocities before and after the
transition. The possible consequences are illustrated in Fig. 3.3 that shows
the potential energy curves of two electronic states. The curves are plotted
so that r′e > r′′e .
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Figure 3.3: The Franck principle when (a) r′e > r′′e and (b) r′e ' r′′e . The
vibronic transition B–A is the most probable in each case.

In an absorption process of Fig. 3.3(a) the transition goes from the point
A in the lower state to the point B in the upper state. (Zero-point energy
can be neglected when considering Franck’s semiclassical arguments.) The
requirement on the same location before and after the transition means that
the transition occurs between the points that are on the same vertical line.
Then r remains constant, and we speak of a vertical transition. The require-
ment on the same velocity means that the transition from point A, where
the nuclei do not move, must go to point B, which is a classical turning point
and where the nuclei also are motionless. The transition from A to C is very
improbable because the change in r is very large. The transition from A to
D is also improbable, even though r is the same the nuclei are moving in
point D.

In Fig. 3.3(b) r′e ' r′′e . Now the most probable transition is from point A
to B without any vibrational energy in the upper state. A transition from A
to C keeps the same r, but the velocities of the nuclei have increased, because
they have kinetic energy corresponding to the distance BC.

Condon treated the intensities of vibronic transitions quantum mechan-
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ically in 1928. The intensity is proportional to the square of the transition
dipole moment Rev (see Eq. (3.13))

Rev =
∫
ψ′∗evµ̂ψ

′′
evdτev, (3.15)

where µ̂ is the electric dipole moment operator, and ψ′ev and ψ′′ev are the vi-
bronic wavefunctions of the upper and lower states, respectively. Integration
is over the electronic and vibrational coordinates. Assuming that the Born-
Oppenheimer approximation is valid, ψev can be represented as a product
ψeψv. Then it follows from Eq. (3.15) that

Rev =
∫ ∫

ψ′∗e ψ
′
vµ̂ψ

′′
eψ
′′
vdτedr, (3.16)

where r is the internuclear distance. We integrate first over the electronic
coordinates τe

Rev =
∫
ψ′vReψ

′′
vdr, (3.17)

where Re is the electric transition dipole moment:

Re =
∫
ψ′∗e µ̂ψ

′′
edτe. (3.18)

The possibility to carry out the integration to give Eq. (3.17) results from the
Born-Oppenheimer approximation which assumes that nuclei can be treated
as stationary with respect to much faster electrons. This approximation also
allows us to take out Re from the integral (3.17) and treat it as a constant
that does not depend on r. We obtain then

Rev = Re

∫
ψ′vψ

′′
vdr. (3.19)

The integral
∫
ψ′vψ

′′
vdr is a measure for the overlap of the two vibrational

wavefunctions. Its square is known as the Franck-Condon factor.
In quantum mechanics, the classical turning point of a vibration is re-

placed by the maximum or minimum of the wavefunction ψv close to this
turning point. Figure 3.4 presents a case where the the vibrational wave-
function of the upper state v′ = 4 has a maximum close to the turning point
and is directly above the maximum of the wavefunction v′′ = 0. The largest
contribution to the overlap integral of the vibrational wavefunctions is in-
dicated by a solid line, but considerable overlap occurs when r is between
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Figure 3.4: The Franck-Condon principle applied to the case r′e > r′′e when
the 4− 0 transition is the most probable.
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Figure 3.5: Typical intensity distributions for vibronic transitions.

the dashed lines. Clearly, the overlap is considerable also for wavefunctions
whose v′ is close to four. We get an intensity distribution shown in Fig.
3.5(b).

If r′e � r′′e , a large fraction of the intensity may go the vibrational states in
the continuum above the the dissociation limit. A progression (from the lower
state v′′ = 0) shown in Fig. 3.5(c) then follows, with an intensity maximum
at high values of v′ or in the continuum. Figure 3.5(a) shows the intensity
maximum to the vibrational state v′ = 0, when r′e ' r′′e . The intensity falls
usually down rapidly in such a case.

The case with r′e < r′′e can happen if an electron makes a transition from
an antibonding or non-bonding orbital to a bonding orbital. It is most likely
between two excited electronic state. The situation is similar to the one in
Fig. 3.4, but the upper potential energy curve is shifted to a smaller value of r,
for example, in such a way that the right maximum of the wavefunction v′ = 4
is above the maximum of v′′ = 0. A result is the intensity distribution in Fig.
3.5(b). Thus the observation of the intensity maximum at the vibrational
quantum number v′ > 0 indicates a substantial change in the equilibrium
distance re between the upper and lower states, but it does not tell the sign
of the change. This is quantitatively quite not true because the progressions
are slightly different for the cases r′e > r′′e and r′e < r′′e . The analysis of the
intensities of the vibronic transitions yields a lot of information about the
shapes of the potential energy curves of the electronic states.
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Figure 3.6: The repulsive ground state and the bound excited state of the
He2 molecule.

Repulsive states and continuous spectra

The ground electron configuration (1σg1s)
2(1σ∗u1s)

2 of the He2 molecule is
expected to be unstable, because the bonding character of the σg1s orbital
is cancelled by the antibonding character of the σ∗u1s orbital. The potential
energy curve of the X1Σ+

g state has no minimum but it decreases gradually
as a function of r. This is shown in Fig. 3.6. Such a state is called repulsive,
because the atoms repel each other. The state has no discrete vibrational
energy levels but the levels form a continuum.

By promoting an electron from the σ∗u orbital to an binding orbital can
give bound states of the He2 molecule. Several of them have been observed in
emission spectroscopy. For example, the configuration (σg1s)

2(σ∗u1s)
1(σg2s)

1

leads to the bound states A1Σ+
u and a3Σ+

u . Figure 3.6 shows the shape of the
potential energy curve of the A1Σ+

u state. The transition A − X is allowed
and produces a strong continuous intensity in the wavelength region 60–100
nm. This can be used as a source of far ultraviolet radiation, like other
diatomic noble-gas molecules.
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