Cluster Science with Electron Spectroscopy

What are *clusters* ?

Aggregates consisting of a "small" number of building blocks (atoms or molecules)

Lecture Outline

- 1. What are Clusters ? Types of Clusters
- 2. Electron Spectroscopy
- 3. Synchrotron Radiation. What are the Advantages?
- 4. Production of Clusters out of Natural Gases
- 5. Examples of Electron Spectroscopy on Clusters
- 6. Metal-Cluster Sources and more Results

Transition from atoms to solids

Clusters -

between separate molecules and solidsan intermediate state of matter

Water Clusters – a Link to Everyday

Two unused electrons of oxygen atoms are epmloyed in the bonding to the hydrogen atoms of the neighbours

Rigid Geometric Structure

R. Smalley Nobel prize 1996

Fullerene C_{60} with an atom inside

Rigid Geometric Structure

Enclosed shells - onion-like

Icosahedron - all vertices are on a spherical surface

Specificity of Clusters-Size-dependent surface fraction

Good for:

systems with non-directional bonds (inert gases, metals)

Clusters held together by van-der-Waals forces

Convenient modell systems- rare-gas clusters- Ar, Kr, Xe

Energy minimum principle minimizing the number of surface atoms

Covalent bonding - Semiconductor Clusters practical interest driven by modern electronics

Clusters out of two chemical elements Cd & S CdS at macroscale - semiconductor How do atoms of Cd & S arrange in CdS at nanoscale? In a two-component substance – is there any segregation of elements? Could one chemical be more on the surface than in the interior?

Ionic Clusters- of salt molecules

practical interest driven by environmental issues

Two-component ionic substance -

At macroscale it is an alternating M⁺ - X⁻ lattice How do the salt molecules arrange themselves at nanoscale?

Metal Clusters

how many atoms are needed for metals to become what they are ?

Metal Clusters Example:

Bivalent metals of IIA, IIB groups (mercury)

- s orbital in atoms fully occupied, p orbital vacant
- s-p hybridization increases with the size
- **s-p** gap decreases with the size

Clusters with hydrogen bonds

practical interest driven by environmental issues

unused electrons of oxygen atoms bind to the hydrogen atoms of other molecules

Clusters with hydrogen bonds simple organic molecules - methanol CH₃OH

unused electrons of oxygen atoms bind to the hydrogen atoms of other molecules

Clusters out of dipole molecules

simple organic molecules - chloromethane CH₃Cl

Inherent dipoles of molecules arrange anti-parallelly

Historical Perspective

- How did people discover clusters the first time?
- Mass-spectroscopy studies of atomic ionization energies
- Ionization by an electron beam, discharge lamp, laser...
- Metal vapour picked-up by helium- condensation in a beam

Fig. 1. Typical time-of-flight spectrum of sodium aggregates recorded with ionising electrons at 9 eV and for a temperature $T_0 = 1200 \text{ K}$. The intensities have been multiplied by 64 for $3 \le x \le 8$ and by 128 for x > 8.

Historical Perspective

- Dedicated cluster sources
- Mass-spectroscopy study goes on
- Magic size numbers stable geometries

FIG. 1. Mass spectrum of xenon clusters. Observed magic numbers are marked in boldface; brackets are used for numbers with less pronounced effects. Numbers below the curve indicate predictions or distinguished sphere packings.

Electron Spectroscopy with Photons: electronic structure of the sample is probed

- Einstein's photoeffect law: $hv = E_{binding} + E_{kinetic}$
- Electrons of various E_{binding} give a spectrum of E_{kinetic}
- A device determining $E_{kinetic}$ electron spectrometer
- Spectroscopy of valence, delocalized electrons UV, VUV
- Spectroscopy of core-level, localized electrons X-rays
- Electron spectroscopy with photons photoelectron spectroscopy

PES

What does one see in a PES experiment?

Electron Spectroscopy

1981

K.Siegbahn Binding energy spectrum of electrons in an atom Valence el. Core el. 1 Core el. 2 0 **Electron binding energy**

Core-electrons are bound much stronger than the valence ones

Electronic structure reveals a change in conductivity

Bivalent metals of the IIB group

- In separate atoms s levels are fully occupied, p levels are empty ٠
- In solid metals valence bands are built by both s and p electrons ٠
- In clusters: ٠

p levels of neighbour atoms get populated by s-electrons

- s-p hybridization appears covalent bonding
- With the cluster size increase:

the discrete energy levels develop into bands

s-p and other inter-band gaps decrease

Metallic bonding appears when the gap merges

Ionization with Different Photon Sources

Lasers

Typical ionization energies are ≈10 eV Visual range photons –up to 3 eV. Fluorine laser -7.9 eV

Discharge lamps

Helium lamps 21 eV photons, \approx 40 eV photons Nitrogen lamp \approx 10 eV

Rotating metal discs bombarded by fast electrons

Discs of aluminium – ≈1500 eV photons

• Synchrotron rings

accelerated electrons emit from IR to hard x-rays

Why synchrotron radiation (SR) ?

- The change of the properties manifests itself in the electronic structure or the electron binding energies demands ionizing radiation
- Those energy levels are possible to probe which are not reachable by other light sources
- Selectivity and tunability for an enhancement of interaction between matter and radiation
- Core-levels –elemental sensitivity- each element has distinctly different response
- Core-levels separate responses from the inner atoms (bulk) and surface

How clusters are produced ?

Photoelectron Spectrum of an atom- Ar atom

Photoelectron Spectrum of an atom- Ar atom

Electronic configuration of an argon atom:

- n=1 s² two s-electrons
 - n=2 s² p⁶ two s-electrons and six p-electrons
 - n=3 s² p⁶ two s-electrons and six p-electrons

Binding Energy Spectrum

 $hv = E_{binding} + E_{kinetic}$ Electrons of various $E_{binding}$ give a *spectrum*

PES on negatively charged Hg clusters

- Pre-charged clusters- here with a crossing electron beam
- Mass-selected with a time-of-flight mass-spectrometer
- Ionized with a fluorine laser -7.9 eV
- Extra electron lands at the bottom of conduction band

PES on negatively charged Hg clusters

The path of science is not always straight

First clusters studied with SR and PES were mostly "Model" systems:

Clusters of inert gas atoms: Ne, Ar, Kr, Xe

Clusters of simple molecules: H₂0, O₂, CO, CO₂, CH₃OH, C₂H₅OH, C₆H₆, CH₃Cl/Br some mixtures and solutions

Xenon 4d photoelectrom emission hv = 120 eV

Polarization screening in Xe clusters

Photoelectrons from the inner part

flat layers

Photoelectrons from the inner part

Depth profiling in free Xe clusters

Depth profiling in free Xe clusters

Depth profiling in free Xe clusters

<N> = 1000

Is there any use of this knowledge except for our specific research area?

Fundamental questions to address:

When the matter is created out of separate different free atoms –

What kind of solid composition comes out ?

What governs the self-assembling mechanism of matter formation ?

Clustering from a binary gas mixture

Pure expansion: <N> = <N>(T, D, p, k_{A-A})

Mixed A B expansion: T, D, p, k_{A-A}, k_{B-B}, k_{A-B}, r_{A/B}

Present experiment:
T, D, p fixed
k_{A-A}, k_{B-B}, k_{A-B}, r_{A/B} varied

What one can expect ?

Energy difference: cohesive energy, E_c $E_c \alpha$ number of bonds

Fewer bonds at surface than in the bulk Higher E_c value per atom in the bulk

Relevant to practical nanoparticles?

•Chemical element sensitivity:

identifies different elements in compounds

•Site-sensitivity:

separate responses of inner and surface atoms

In a two-component substance - what chemical is on the surface and what in the interior?

Relevant to practical nanoparticles?

In a two-component substance - what chemical is on the surface and what in the interior?

An example linking to practice:

How do atoms of Cd & S arrange in CdS at nanoscale?

Relevant to practical nanoparticles?

In a two-component substance - what chemical is on the surface and what in the interior?

An example linking to practice:

How do atoms of Cd & S arrange in CdS at nanoscale?

Conclusions: Consequences: sulphur dominates the cluster surface properties of small light-emitting devices

Metal or semiconductor clusters – how to produce them ?

vaporizing solids heating solid in a furnace

 or
 by magnetron sputtering

Metal clusters – core-level photoelectron spectrum

Sodium 2p core-level photoelectron spectrum

- Measured relative to Vacuum
- ■BE shift from atoms \approx -4.5 eV
- Resembles solid Na XPS
- Coupling core-valence is absent
- Bulk is lower than surface
- Spectral profiles are asymmetric (valence involved in core-ionization)

Metal clusters – core-level photoelectron spectra

Sodium 2p XPS - different photon energies

- Used ideas from inert gases
- Bulk becomes stronger with hv
- Electron escape-depth probed
- hv = 74eV surface-sensitive

In clusters:

$$E_{cluster} = E_{vacuum}(solid) + \frac{1}{2} \frac{e^2}{R}$$

In solids the measured energy is : $E_{solid} = E_{vacuum}(solid) \cdot W_{solid}$

Metal clusters – core-level photoelectron spectra

Potassium 3p XPS

What governs the self-assembling mechanism of Matter formation ?

Free atoms

Cluster

Energy difference: cohesive energy, $E_c = E_c \alpha$ number of bonds

What governs the self-assembling mechanism of Matter formation ?

A system tries to reach a state with the lowest energy

Fewer bonds at surface than in the bulk Higher E_c value per atom in the bulk high E_c component in the bulk

Vaporizing NaK alloy NaK – Na : K ≈ 1:2 by weight

A composition liquid at room T and solid below -13°C

On macroscopic scale:

In binary liquid alloys

the surface is covered by the lower-surface-energy element

Vaporizing NaK alloy

In free neutral clusters:

$$E_{cluster} = E_{vacuum}(solid) + \alpha \frac{e^2}{R}$$

 $E_{cluster} > E_{solid}$

